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INTRODUCTION 
 
Electromagnetic wave polarisation is a basic concept, and essential properties of many materials will be affected 
depending upon the polarisation of an interacting electromagnetic wave [1][2]. 
 
The Fresnel reflection function (FRF) at the surface of a medium was determined using electromagnetic wave 
polarisation [3]. The FRFs are used in many fields, e.g. boundary theory and multilayer dielectric theory in optics and 
electromagnetics. 
 
The FRF is the basis of the widely used bidirectional reflectance distribution function [4]. On the other hand, in 
engineering, it is necessary to use the engineering Fresnel reflection function (EFRF). The study of EFRFs is important 
both theoretically and practically. 
 
DIFFERENT FORMS OF THE FRESNEL REFLECTION FUNCTION 
 
Fresnel Equations 
 
At a media interface, an incident electromagnetic wave is partially reflected and partially refracted (transmitted). 
The incident, reflected and refracted electromagnetic wave amplitudes spread out according to Fresnel’s theory. 
 
Electromagnetic waves are transverse, and only the electric field is visual; in fact, the light vector is exactly the electric 
field vector. For an electromagnetic wave in free space, the H


(magnetic) and E


 (electric) fields have the same energy 

and since H


 can be expressed in terms of E


, only E


 will be considered. 
 
To simplify the discussion without any loss of generality, the incident electromagnetic wave will be treated as two 
mutually perpendicular, linearly polarised electromagnetic waves, of the same intensity, i.e. sE


(S-polarisation), and 

pE


(P-polarisation). 
 
The electromagnetic field boundary conditions can be determined by applying Maxwell’s equations. This yields the 
composite wave obtained by superimposing the incident and reflected waves in the incident space in medium 1 and the 
refracted (transmitted) wave on the other side of the interface in medium 2. For non-metallic media, the total tangential 
components of the electromagnetic fields are continuous at the interface. From this can be derived the Fresnel formulae. 
For an electromagnetic field perpendicular to the incident plane, the Fresnel equations [5] are: 
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Where:  2
2 1

1
/r

r
r

n n nε
ε= =  [6], 

 
is the relative refractive index of two dielectrics; iθ , tθ  are the local angles of incident and of the transmitted 

electromagnetic waves. By Snell’s law, the refractive and incident angles satisfy sin sin /t i rnθ θ=  [7]; sr  and st  are 
the reflection and transmission coefficients; s and p refer to S-polarisation and P-polarisation and are so used hereafter. 
 
As for the electromagnetic field parallel to the incident plane, the Fresnel equations are: 
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From Formulae (1a) and (2a), by averaging the power reflectance with orthogonal polarisations obtained is: 
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=                                                                                   (3) 

 
Where the function F is often called the precision FRF. 
 
S-Polarisation Engineering Fresnel Reflection Function 
 
Taking account of polarisation, the Fresnel functions [8] also can be expressed as follows:  
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In addition: 
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For a metal, the refractive index generally is complex, i.e. n ik+ ; for non-metallic cases 0k = and the refractive 
index is real [9]. As for the non-polarised case, the FRF takes the form: 
 

( )
2

ps FF
F

+
=                                                                                    (5) 

 
This is called the precision FRF. 
 
The Brewster [10][11] angle in Equation (5) is pF . 
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This plays a secondary role, and is ignored in approximate calculations where only the S-polarisation sF  is considered, 
and is referred to as the S-polarisation EFRF. 
 
Schlick Engineering Fresnel Reflection Function 
 
The incident wavelength, incident angle and material optical properties are related to the reflection coefficient. The 
material optical properties, including refractive index ( )n λ and the attenuation coefficient ( )k λ  are influenced by the 
wavelength. 
 
Materials are divided into two categories: dielectrics and metal conductors. For dielectrics, in the visible light 
range, ( )k λ  is 0; for conductors, ( )k λ  is not 0. 
 
Sometimes, it is necessary to examine the optical property of a material, but this may be hard to determine. However, 
when an electromagnetic wave has a normal incidence (i.e. 0θ = ), an estimate of the Fresnel reflection coefficient can 
be easily determined. Starting with ( )0,F λ , Schlick [12] summarised the approximation solution ( ),F θ λ  as: 
 

[ ]5( , ) (0, ) (1 cos ) 1 (0, )F F Fq l l q l= + - -                                                          (6) 
 
This is known as the Schlick EFRF. In particular, ( )090 , 1F λ = , is important for the case of grazing incidence. 

 
Simplified Engineering Fresnel Reflection Function 
 
Using the precision FRF for actual calculations is cumbersome. In engineering calculations, to reduce the amount of 
computation, the following approximation is usually used: 
 

( )2
simple 01 cos iF A θ= −                                                                        (7) 

 

simpleF is called the simplified EFRF, here: 0
11
1

r

r

nA
n
−

= −
+

. 

 
CONTRAST BETWEEN ENGINEERING FRESNEL REFLECTION FUNCTIONS 
 
Consider a dielectric in air, its relative refractive index is rn , and 1rn > . Selecting rn  = 1.45 and 1.75, using Formulae 
(3), (6), (4a) and (7) to calculate the precision FRF, the Schlick EFRF, the S-polarisation EFRF and the simplified 
EFRF. The three latter EFRFs can be compared with the precision one (3). 
 
Simulated plots are depicted in Figure 1, Figure 2 and Figure 3. 
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Figure 1: Comparison of the precision FRF and the Schlick EFRF ( rn = 1.45 and 1.75). 
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Figure 2: Comparison of the precision FRF and the S-polarisation EFRF ( rn = 1.45 and 1.75). 
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Figure 3: Comparison of the precision FRF and the simplified EFRF ( rn = 1.45 and 1.75). 

 
The results reveal the following: 
 
• All the EFRFs tend to total internal reflection as for the precision ERF when in grazing incidence, meaning there is 

no transmitted wave in the dielectric. 
• Of all the EFRFs, the one with its curve closest to the precision FRF’s is the most accurate. 
• The Schlick EFRF was closest to the precision FRF, followed by the S-polarisation EFRF, while the simplified 

EFRF had the biggest divergence. 
 
IMPACTS ON ENGINEERING AND TECHNOLOGY EDUCATION 
 
Teaching about polarised electromagnetic waves is difficult in engineering courses. The research on FRFs reveals that 
electromagnetic waves with two polarisations present different reflection phenomena. Even for a random incident 
electromagnetic wave, the polarisation is important in determining the reflected wave. Through numerical simulations 
of EFRFs at media interfaces, the reflection of electromagnetic waves has been determined. Since the reflection 
function mirrors energy reflectivity, no reflection phase shift occurred. 
 
CONCLUSIONS 
 
Precision FRFs cannot be easily calculated at many interfaces; however, the EFRFs may be used. The Schlick EFRF is 
most accurate of the EFRFs and so is more useful in engineering. 
 
The authors are of the view that results of this research should improve understanding of FRFs and their application by 
university engineering students. 
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